在过去的十年中,我们看到了工业数据,计算能力的巨大改善以及机器学习的重大理论进步。这为在大规模非线性监控和控制问题上使用现代机器学习工具提供了机会。本文对过程行业的应用进行了对最新结果的调查。
translated by 谷歌翻译
Neural fields, also known as coordinate-based or implicit neural representations, have shown a remarkable capability of representing, generating, and manipulating various forms of signals. For video representations, however, mapping pixel-wise coordinates to RGB colors has shown relatively low compression performance and slow convergence and inference speed. Frame-wise video representation, which maps a temporal coordinate to its entire frame, has recently emerged as an alternative method to represent videos, improving compression rates and encoding speed. While promising, it has still failed to reach the performance of state-of-the-art video compression algorithms. In this work, we propose FFNeRV, a novel method for incorporating flow information into frame-wise representations to exploit the temporal redundancy across the frames in videos inspired by the standard video codecs. Furthermore, we introduce a fully convolutional architecture, enabled by one-dimensional temporal grids, improving the continuity of spatial features. Experimental results show that FFNeRV yields the best performance for video compression and frame interpolation among the methods using frame-wise representations or neural fields. To reduce the model size even further, we devise a more compact convolutional architecture using the group and pointwise convolutions. With model compression techniques, including quantization-aware training and entropy coding, FFNeRV outperforms widely-used standard video codecs (H.264 and HEVC) and performs on par with state-of-the-art video compression algorithms.
translated by 谷歌翻译
Data compression is becoming critical for storing scientific data because many scientific applications need to store large amounts of data and post process this data for scientific discovery. Unlike image and video compression algorithms that limit errors to primary data, scientists require compression techniques that accurately preserve derived quantities of interest (QoIs). This paper presents a physics-informed compression technique implemented as an end-to-end, scalable, GPU-based pipeline for data compression that addresses this requirement. Our hybrid compression technique combines machine learning techniques and standard compression methods. Specifically, we combine an autoencoder, an error-bounded lossy compressor to provide guarantees on raw data error, and a constraint satisfaction post-processing step to preserve the QoIs within a minimal error (generally less than floating point error). The effectiveness of the data compression pipeline is demonstrated by compressing nuclear fusion simulation data generated by a large-scale fusion code, XGC, which produces hundreds of terabytes of data in a single day. Our approach works within the ADIOS framework and results in compression by a factor of more than 150 while requiring only a few percent of the computational resources necessary for generating the data, making the overall approach highly effective for practical scenarios.
translated by 谷歌翻译
Neural radiance fields (NeRF) have demonstrated the potential of coordinate-based neural representation (neural fields or implicit neural representation) in neural rendering. However, using a multi-layer perceptron (MLP) to represent a 3D scene or object requires enormous computational resources and time. There have been recent studies on how to reduce these computational inefficiencies by using additional data structures, such as grids or trees. Despite the promising performance, the explicit data structure necessitates a substantial amount of memory. In this work, we present a method to reduce the size without compromising the advantages of having additional data structures. In detail, we propose using the wavelet transform on grid-based neural fields. Grid-based neural fields are for fast convergence, and the wavelet transform, whose efficiency has been demonstrated in high-performance standard codecs, is to improve the parameter efficiency of grids. Furthermore, in order to achieve a higher sparsity of grid coefficients while maintaining reconstruction quality, we present a novel trainable masking approach. Experimental results demonstrate that non-spatial grid coefficients, such as wavelet coefficients, are capable of attaining a higher level of sparsity than spatial grid coefficients, resulting in a more compact representation. With our proposed mask and compression pipeline, we achieved state-of-the-art performance within a memory budget of 2 MB. Our code is available at https://github.com/daniel03c1/masked_wavelet_nerf.
translated by 谷歌翻译
要了解深层relu网络的动态,我们通过将其分解为级级$ w(t)$ and Angle $ \ phi(t):= \ pi- \ theta,研究了梯度流量$ W(t)$的动态系统(t)$组件。特别是,对于具有球形对称数据分布和平方损耗函数的多层单晶元神经元,我们为大小和角度成分提供上限和下限,以描述梯度流动的动力学。使用获得的边界,我们得出结论,小规模初始化会导致深单重质神经元的缓慢收敛速度。最后,通过利用梯度流和梯度下降的关系,我们将结果扩展到梯度下降方法。所有理论结果均通过实验验证。
translated by 谷歌翻译
视觉预训练的最新进展表明,在不同的视觉任务中表现出惊人的表现,阐明了对人工智能研究中对视觉和文本概念的全面理解的长期问题。但是,在医学领域的视觉预训练的应用方面取得了有限数量和多样性阻碍了对联合视觉语言概念的成功学习。在这项研究中,我们介绍了Max-VL,这是一种针对医疗领域中有效视觉预训练的模型。我们在实验上证明,预先训练的MAX-VL模型在各种视觉任务中都优于当前最新视觉语言模型。我们还提出了用于诊断新出现疾病和人为错误检测的临床实用性,并显示了该模型在不同领域数据中的广泛适用性。
translated by 谷歌翻译
在线巨魔增加了社会成本,并对个人造成心理损害。随着自动化帐户利用机器人进行拖钓的扩散,目标个人用户很难在定量和定性上处理这种情况。为了解决这个问题,我们专注于自动化对抗巨魔的方法,因为对战斗巨魔的反应鼓励社区用户在不损害言论自由的情况下保持持续的讨论。为此,我们为自动反响应生成提出了一个新颖的数据集。特别是,我们构建了一个配对数据集,其中包括巨魔评论和使用标记的响应策略的反响应,该策略使我们的数据集中的模型可以通过根据指定策略改变反响应来生成响应。我们执行了三个任务来评估数据集的有效性,并通过自动和人类评估评估结果。在人类评估中,我们证明了数据集中微调的模型显示出策略控制的句子生成的性能有了显着改善。
translated by 谷歌翻译
大脑磁共振成像(MRI)扫描的自动分割和体积对于诊断帕金森氏病(PD)和帕金森氏症综合症(P-Plus)至关重要。为了提高诊断性能,我们在大脑分割中采用了深度学习(DL)模型,并将其性能与金标准的非DL方法进行了比较。我们收集了健康对照组(n = 105)和PD患者(n = 105),多个全身性萎缩(n = 132)和渐进性超核麻痹(n = 69)的大脑MRI扫描。 2020.使用金标准的非DL模型FreeSurfer(FS),我们对六个脑结构进行了分割:中脑,PON,CAUDATE,CAUDATE,PUTATATE,pALLIDUM和THIRD CNTRICLE,并将其视为DL模型的注释数据,代表性V -net和unet。计算了分化正常,PD和P-Plus病例的曲线下的骰子分数和面积。每位患者六个大脑结构的V-NET和UNETR的分割时间分别为3.48 +-0.17和48.14 +-0.97 s,比FS(15,735 +-1.07 s)快至少300倍。两种DL模型的骰子得分都足够高(> 0.85),它们的疾病分类AUC优于FS。为了分类正常与P-Plus和PD与多个全身性萎缩(小脑型)的分类,DL模型和FS显示出高于0.8的AUC。 DL显着减少了分析时间,而不会损害大脑分割和差异诊断的性能。我们的发现可能有助于在临床环境中采用DL脑MRI分割并提高大脑研究。
translated by 谷歌翻译
低剂量和高剂量CT图像的采集条件通常是不同的,因此CT数字的变化经常发生。因此,学习目标图像分布的无监督深度学习方法通常会引入CT数字扭曲,并在诊断性能中造成不利影响。为了解决这个问题,我们在这里提出了一种新颖的无监督学习方法,用于使用贴剂深度度量学习进行低水平CT重建。关键的想法是通过拉动具有相同解剖结构的图像贴片的正面对来学习嵌入空间,并推动具有相同噪声水平的负对。因此,该网络经过训练以抑制噪声水平,同时即使在图像翻译后仍保留原始的全局CT数字分布。实验结果证实,我们的深度度量学习在产生没有CT数字的高质量DeNocied图像中起着至关重要的作用。
translated by 谷歌翻译
理解梯度下降对Relu网络的概括能力的隐性偏见一直是机器学习研究中的重要研究主题。不幸的是,即使对于经过正方形损失训练的单个Relu神经元,最近也表现出不可能以模型参数规范来表征隐式正则化(Vardi&Shamir,2021)。为了缩小理解Relu网络的有趣概括行为的差距,在训练单神经元网络时,我们在这里检查参数空间中的梯度流动动力学。具体来说,我们发现了在支持向量方面的隐性偏见,该偏见在Relu网络良好地概括的原因和如何延伸方面起着关键作用。此外,我们分析了梯度流相对于初始化规范的幅度,并表明学习重量的规范严格通过梯度流量增加。最后,我们证明了单个Relu神经元的全球融合,以$ d = 2 $ case。
translated by 谷歌翻译